WEAKLY PRIME SUBMODULES AND PRIME SUBMODULES
نویسندگان
چکیده
منابع مشابه
On Graded Weakly Classical Prime Submodules
Let R be a G-graded ring and M be a G-graded R-module. In this article, we introduce the concept of graded weakly classical prime submodules and give some properties of such submodules.
متن کاملSpectrum of prime L-submodules
Let L be a complete lattice. We introduce and characterize the prime L-submodules of a unitary module over a commutative ring with identity. Finally, we investigate the Zariski topology on the prime L-Spectrum of a unitary module, consisting of the collection of all prime L-submodules, and prove that for L-top modules the Zariski topology on L-Spec(M) exists. © 2007 Elsevier B.V. All rights res...
متن کاملOn graded classical prime and graded prime submodules
Let $G$ be a group with identity $e.$ Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce several results concerning graded classical prime submodules. For example, we give a characterization of graded classical prime submodules. Also, the relations between graded classical prime and graded prime submodules of $M$ are studied.
متن کاملon graded weakly classical prime submodules
let r be a g-graded ring and m be a g-graded r-module. in this article, we introduce the concept of graded weakly classical prime submodules and give some properties of such submodules.
متن کاملSOME RESULTS ON STRONGLY PRIME SUBMODULES
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $P$ of $M$ is called strongly prime submodule if $(P + Rx : M)ysubseteq P$ for $x, yin M$, implies that $xin P$ or $yin P$. In this paper, we study more properties of strongly prime submodules. It is shown that a finitely generated $R$-module $M$ is Artinian if and only if $M$ is Noetherian and every st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2006
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089506003119